
Livingstone Model-Based Diagnosis of Earth Observing One

Sandra. C. Hayden * Adam J. Sweet’
QSS Group, Inc, Mofett FieUCA. 94035, USA

Scott E. Christa*
AerospaceComputing. Inc., Moffett Field, CA. 94035, USA

The Earth Observing One satellite, launched in November 2000, is an active earth science
observation platform. This paper reports on the progress of an infusion experiment in which
the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One,
demonstrating the capability to monitor the nominsl operation of the spacecraft under
command of an on-board planner, and demonstrating on-board diagnosis of spacecraft
failures. Design and development of the experiment, specification and validation of
diagnostic scenarios, characterization of performance results and benefits of the model-
based approach are ‘presented.

I. Introduction
N this experiment, Livingstone is uploaded to the Earth Observing One (EO-1) satellite to conduct diagnostic I tests. EO-1 was developed and is operated by NASA Goddard Space Flight Center (GSFC). Livingstone is a

diagnostic engine developed at NASA Ames Research Center (ARC) by the Model-Based Diagnosis and Recovery
group. The original Livingstone flew on Deep Space 1 @S1) as part of the Remote Agent autonomy experiment
0 in 1999 [2]. Since then, the group has created the next version of Livingstone, called Livingstone 2 62) . As
a technology infusion experiment, L2 and the spacecraft diagnostic models have been integrated with the
Autonomous Sciencecraft Experiment (ME) [3]. ASE was developed by NASA Jet Propulsion Laboratory (JPL),
and first ran on-board the EO-1 on September 20,2003. The autonomy software consists of the Continuous Activity
Scheduling, Planning, Execution and Replanning (CASPER) planner; the science event detection software and the
Spacecraft Command Language (SCL) , developed by Interface and Control Systems (ICs). S C L provides an
executive, a database and the software bridge to the spacecraft’s 1773 data bus. L2 provides a diagnosis component
to ASE, which was not included before.

A range of development and integration activities were undertaken to support the experiment. The major
challenges encountered and their resolutions are discussed. Tasks include development of L2 models of the EO-1
spacecraft and instrumentation, and failure scenario definition, based on knowledge acquired from GSFC. A Real-
Time Interface @TI) and corresponding modeling methodology were developed to account for communication
delays and physical transients in the system. L2, models of the spacecraft, and the RTI were integrated with SCL
and the CASPER planner, first on a PowerPC embedded system and then on the EO-1’s ground test bed, a pair of M-
5 processors with the Virtual Satellite (VSat) simulation system. Diagnostic scenarios were validated prior to upload
on integrated system. System engineering of the overall autonomy software included allocation of VxWorks task
priorities, S C L software bus bandwidth, CPU and RAM resources. In early September 2004, the combined L2 and
ASE software was uploaded to EO-1, and checkout procedures of the L2 software began.

Group Manager, Computational Sciences Division, NASA Ames Research Center, M / S 269-3, and Professional
Member.

Research Engineer, Computational Sciences Division, NASA Ames Research Center, M / S 269-1, AIAA
Professional Member. ‘ Systems Engineer, NASA Ames Research Center, M / S 247-2

1
American Institute of Aeronautics and Astronautics

11. Livingstone Diagnostic Technology
The Livingstone algorithm and component-connection model are introduced here. A Livingstone diagnosis

system consists of two main parts, a generalized inference engine and a domain-specific model. When Livingstone
is deployed on different devices or vehicles, the inference engine does not change; only a new model needs to be
developed. Livingstone uses a qualitative representation, propositional logic, to model the target system. The target
system may be physical, such as the spacecraft hardware, or logical, such as the spacecraft software. The model is
used to predict the states of system components given their initial state, commands which affect the system, and
possible mode transitions. If there is a discrepancy between observed and predicted behavior, this generates conflicts
in Livingstone's internal belief state. These conflicts are then used to focus the search for component modes
(including failure modes), which are consistent with the observed state of the world and the possible mode
transitions in the model. This process is known as conflict-directed best-first search. The set of component modes,
which is found to satisfy the constraints expressed in the model, is termed the mode vector.

A Livingstone component-connection model describes nominal and failure modes for components in terms of
the propositional constraints that must hold in those modes. The connections are the constraints that must hold due
to interactions between 'the components. Transitions between modes of a component are triggered by guard
conditions such as commands, in a finite state machine representation. Constraints are expressed as discrete
variable-value pairs, giving rise to a qualitative model. The real-valued sensor data must be transformed into
qualitative data ("binned") by software called monitors before being used by Livingstone. For the failure modes, the
likelihood of the failure is indicated by a rank, an approximation of the prior probability. The mode vector describes
the overall state of the system.

111. Architecture of the Diagnostic Experiment
L2 was integrated with the Autonomous Sciencecraft Experiment software architecture and infrastructure, and

uploaded to the WARP Mongoose-5 (M-5) processor on-board the EO-1 satellite. The experiment has the capability
to process spacecraft telemetry and to downlink diagnostic health status telemetry for monitoring and display at the
Mission Operations Center (MOC). The experiment architectur? and configuration is shown in Figure 1.

Briefly, the CASPER planner generates high-level plan scripts and sends them to the SCL Executive that
generates a sequence of commands to execute the plan. The SCL Software Bridge connects applications on the
WARP-M5 processor to the 1773 spacecraft data bus for all telemetry processing, including decommutation of
incoming telemetry frames and support for telemetry downlink. Incoming data may be stored in the Data
Repository, with database triggers for notification of executed commands and received observations to subscriber
processes such as L2.
L2 performs diagnosis using a qualitative model of the target system to predict observations given the commands
issued to the system, postulating diagnoses to explain discrepant observations. A diagnosis consists of a group of
failure candidates, their constituent modes and the likelihood of each candidate.

2
American Institute of Aeronautics and Astronautics

l -

Simple declarative model

M-5 Processor

Mission Operations
Control (MOC) /

Ground Processing
Unit (GPU)

Figure 1: Architecture of the L2 on EO-1 Experiment.

IV. Livingstone Model Development
An L2 model contains the device- or vehicle-specific information used in diagnosis. L2 models are created in a

component-based manner: first components are defined, then connected together to create the overall system model.
Components can also be contained in other components in the model, although internally L2 treats the model as flat.

For speed considerations, L2 modeis are discrete. Variables can take a Siiiie niinber of vaiues siich as "low",
"medium", and "high", and components can contain a finite number of modes such as "on", "off, "failedOn", and
"failedoff". In these respects, an L2 model resembles a finite-state machine. The input commands are used as the
guards enabling the system to switch modes. Each component mode specifies qualitative constraints between the
internal variables and the vehicle telemetry.

To perform diaposis, L2 uses the commands given to the system to indicate component mode changes. Using
the constraints in the model, L2 generates the expected telemetry values of the new system mode and compares them
to the actual telemetry values. If the expected values and the actual values disagree, L2 determines that a fault has
occurred. It then searches the space of component fault modes to find those consistent with the current observations;
a diagnosis containing the set of consistent component faults is returned.

In general, the process of creating an L2 model has four steps: knowledge acquisition, scope definition, model
creation, and model testing. In practice, these steps are often iterated before a model is complete.

.

3
American Institute of Aeronautics and A S ~ ~ O M U ~ ~ C S

A. Knowledge Acquisition
Knowledge acquisition is the process by which a modeler gathers information about a device or vehicle. It is

usually the most time-consuming part of creating an L2 model. It simply takes time to understand the components
cf :: vehicle and how th,ey behwe in nomA-na! ax! fm!t cofiditions, In addition, if a system is still in the design stage.
the information to capture in a diagnosis model is in flux or may not exist. Usually several sources of information
are used to gain the knowledge needed: design specifications, schematics and Failure Modes, Effects and Criticality
Analysis (FMECA), and, if available, the system designers themselves.

The forms of
documentation mentioned above were used, as well as mission timelines and the EO-1 Spacecraft User’s Guide.
EO-1 has been flying for several years, which makes knowledge acquisition easier: the satellite hardware is not
changing, the documentation is more complete, and the engineers have years of experience operating the spacecraft.

For EO-1, the models were created by the group at Ames, supported by the GSFC engineers.

B. Scope Definition
Determining the scope of an L2 model involves deciding which vehicle components and component faults to

include in the model, and the level of detail in which to model them. The scope of the EO-1 L2 model is a subset of
the spacecraft components most relevant to the science data collection sequence: the two imaging instruments,
called the Hyperion and the Advanced Land Imager (ALI), and the data recording device, called the WARP. To
ease the integration of LEO-1 with ASE, the model scope was chosen to require only a subset of the commands and
telemetry already used by ASE. The telemetry values in use by ASE are mostly discrete “status bit” values. As a
result, the EO-1 model is fairly high-level. More detailed models couId be developed with additional work and by
incorporating additional telemetry values.

C. Model Creation
After gaining knowledge of the vehicle and deciding the scope of the model, the model creation begins. As

mentioned previously, while most real systems exhibit continuous behavior, L2 models are discrete; the main
challenge in creating a model is creating a discrete representation of the system useful for diagnosis. Given that
most of the EO-1 telemetry observations used by the model are already discrete, creating a discrete representation
was straightforward.

The EO-1 model was created using L2’s graphical model creation tool, called Stanley. It contains the three
main subsystems described above: the ALI, the Hyperion, and the WARP.

The Hyperion model is shown in Figure 2 below.

4
American Institute of Aeronautics and Astronautics

- .

Figure 2: L2 model of the Hyperion

There are three components modeled in the Hyperion; the main aperture cover, which opens to image the earth,
the aperture cover sensor, which measures the aperture cover's position, and the electronics assembly, containing the
imaging electronics. The imgeDutu variable represents what type of image is being taken. It is set based on the
modes of the electronicsAssembly and the apertureCover. NO-IMAGE if the electronicsAssembly is disabled,
DARK-IMAGE is the electronics are enabled but the aperturecover is closed, and EARTHJMAGE if the aperture
cover is open.

The ALI model is shown in Figure 3:

5
American Institute of Aeronautics and A S ~ ~ O M U ~ ~ C S

Figure 3: L2 model of the ALI

There are five components contained in the model of the ALI. First, the fiepower represents the focal plane
electronics power, which must be enabled in order to take an image. The dataGate status indicates if an image is
currently being acquired. The apertureCuver acts as the lens cap of the instrument; it is normally closed to protect
the instrument and to take dark calibration images, and open when taking images of the earth. The
mechanismf'ower component supplies power io hie apeitiiie coi;ei, allowiiig it to ;o~ve. Again, the imgeDctt2
variable represents what type of image is being taken. It is assigned according to the modes of the fiepower,
dataGate, and aperturecover: if the fiepower or dataGate is disabled, it is set to NO-IMAGE; otherwise, if the
aperture cover is closed, it is set to DARK-IMAGE, and if the aperturecover is open it is set to EARTH-IMAGE.
Finally, three of the sensors are modeled: the mechanismPowerSensor which reports the state of the mechanism
power, and two light-emitting diode (LED) indicators, which indicate the state of the aperturecover. The multiple
sensors surrounding the aperturecover were explicitly modeled (and allowed to fail) because the semi-redundant
information will allow L2 to find multiple hypotheses when a single fault occurs in the subsystem, one of the key
features demonstrated in the experiment.

Finally, the WARP model is shown below:

. - ' I

6
American Institute of Aeronautics and Astronautics

Figure 4: L2 model of the WARP

The WARP is modeled as two components, the WARP-HW and the WARP_SW. The WARP-HW models the
device's hardware modes, and the WARP-SW modeis the software modes. As evidenced by the many connections
between the two components, the hardware modes and software modes are closely related - not all combinations of
modes are valid.

D. Testing the Model
Models can be tested directly in the Stanley GUI model development environment. Execution of the models

involves L2 in a stand-alone mode. A diagnostic scenario, consisting of a sequence of commands and telemetry
observations, exercises the model within Stanley.

For testing the L2 model of the EO-1 satellite, the basic scenario is the same as the model's scope: the satellite's
imaging timeline (data collection event). More specifically, the scenario is composed of the commands and
~ ~ ~ i i i e i r y 03~rvations seni ta "le Ky-pcrioii, &I, and WARP. This squeiice is beefly desc&x? below: r-1-

B
3 Dark calibration image taken
>
9 Earthimagetaken
9
>
9
Seventeen Stanley scenarios were created in all, one representing the nominal data collection event, and one to

test each of the fault modes in the L2 model. Each of the fault scenarios is based on the nominal scenario but with
telemetry modified to inject the fault.

Components set to image collection mode

ALI and Hyperion aperture covers opened

ALI and Hyperion aperture covers closed
Dark calibration image taken again
Components set to standby mode

7
Amencan Institute of Aeronautics and Astronautics

V. Integration and Test on the EO-1 Test Beds

A. Remote Testing on the Strings
initiai testing was conducted on a PowerPC computer. Two tests were defined: test C and E. Test C was

designed to test the integration of the L2 and SCL software components. Test D had the addition of CASPER and
the Science software. Once these tests were completed, the testing was moved to the “flight” like hardware test beds.
These test beds consist of three PCs, two M-5s, and communication hardware-which all together was called a
string. Goddard was the keeper and maintainer of three such strings. Later, JPL took String 2 into their possession
while Ames continued to work on String 1 and 3 at Goddard.

A schematic is given below showing the different parts and how they connect.

ASE Test Bed Environment
- Ethernet load

Figure 5: Test Bed Hardware Configuration

The Linux machine runs the ground station software, called ASIST. It handles the communication to and from
the satellite. COMSIM simulates the communication hardware that would be receiving commands and telemetry.
It’s also is used to capture the serial output coming from the WARP so that it can be used for debugging purposes.
COMSIM will also used to upload the software to the WARP via the Ethernet, which could also be done with
another PC using TFI’P. The Star Coupler is the 1773 network hub in which all the test bed hardware communicates
through to each other. The WARP M-5 processor is where the experimental software resides. The C&DH is the
1773 Bus Controller (BC) and will talk to other 1773 Remote Terminals (RT), passing commands and receiving
data. The VSAT Pro is a virtual satellite that simulates the satellite hardware, which consist of the satellite’s attitude,
instruments, WARP remote service node, and power.

B. Test Automation
We developed the capability to perform automated testing. A scripting language called “Expect” was used in the

automation of testing the L2 software on the M5 test bed at Goddard Space Flight Center (GSFC). “Expect” is an
extension of the Tool Command Language (Tcl) and is used for automating user input to other applications. The
name “Expect” comes from the idea of sendexpect sequences popularized by uucp, kermit and other modem control
programs.

8
American Institute of Aeronautics and Astronautics

“Expect” automated everythmg from starting up the software on the M 5 test bed to running L2 to downloading
the files and translating them into human-readable text. The only thing it was unable to do was to reboot the
hardware; however, given time. this will eventually happen too as it already does this for the PowerPC test beds.

Just about every single scenario tmk about three hours to complete and required over 2,000 keystroke entries;
that’s no joke. With a three hour test, many things could go wrong. Automation of the test procedure eliminated the
majority of things going wrong.

C. CPUMetrics
The VxWorks’ “spy’. utility was used to measure CPU utilization per task on the PowerPC only. This

functionality is not supported on the M-5 strings, as these are veritable black boxes. A function was written to
initialize the “spy” interrupt dock at loo0 ticks per second and to collect data at five second intervals. The task’s
output was directed to a file on the PowerPC target. Upon completion of the test, the report file was downloaded to
the host computer and parsed with a Tcl script to extract the individual tasks’ CPU usage data and save it to a
Microsoft Excel file.

The data collected represented the number of ‘ticks’ each task executed, out of the IO00 possible samples per
five seconds. This was then turned into a percentage of CPU time for each task.

VI. Test Results

A. L2UnitTests

below. A screenshot from Stanley showing a diagnosis result is given below:
In the L2 unit tests, the diagnosis from L2 is summarized graphically in the visualization tool Stanley, shown

I - 1 1 ali aperturecover= stu ck Closed
ali.1 ed #9=un kn own Fau It

Ill i4 2 i ali-1 ed #€I= u n k n own Fau It
’ 2 1 -

Figure 6: Screenshot of L2 unit test diagnosis

The relevant information in the table is that there are 2 candidates in the diagnosis of this fault. Each candidate
is a possible explanation of the current observations. The first candidate contains a single fault, that the ALI’s
aperture cover is stuck closed. The second candidate contains two faults, that both of the LED sensors have failed.
Each candidate is a possibility, according to the observations, but the single-fault candidate is more likely to have
occurred (as indicated by the lower number in the “Rank” column. Here, the two LED sensors were measuring the
position of the aperture cover. Hence, L2’s diagnosis is that either the aperture cover is stuckClosed, or both of the
sensors measuring the cover position have failed. This split of “component failed or sensors failed” is a common
result when using L2.

The results for the all of the L2 unit tests are given in Table 1. The criterion for success is as follows:

1) The diagnosis contains the iniected fault as a candidate

9
American Institute of Aeronautics and Astronautics

, ' I

ali.dataGate=unknownFault
ali.mechanismPower=failedDisabled
ali.mechanismPowerSensor=unknownFault
ali.mechanismPower=failedEnabled

2)

As we see from the table, the L2 unit tests completed successfully for all scenarios.

All other candidates in the diagnosis are also possible given the commands and observations

Yes

Yes

Table 1: L2 unit test results

ali.mechanismPowerSensor=unknownFault
ali.apertureCover=failedClosed
ali.led08=unknownFault

I

Yes

Yes

Scenario ID

ali.apertureCover=failedOpen
ali.led08=unkno wnFault

eo 1 Nominal
eo 1DualNominal

eo lFSO 1-AliDataGateFailedDisabled

eo 1FS02-AliDataGateFailedEnabled

Yes

eo 1FS03-AliMechanismPowerFailedDisabled

ali.led09=unkno wnFault
ali.led08=unkno wnFault

eo 1 FSOS-AliMechanismPo werSensorFai led

Yes
Yes

eo 1 FS06~AliApertureCoverFailedClosed c eo 1FSO7-Ali ApertureCoverFailedOpen

h yperion.apertureCover=failedOpen

eo 1FS08-AliApertureCoverFailedIntermediate

eo 1 FSOg AliLed09Failed

Yes

eo 1FS2 1-Hyperion ApertureCoverFailedClosed

h yperion.electronicsAssemb1 y=error

eo 1FS24-Hyperion ApertureCoverSensorFailed

Yes

Final Diagnosis
Candidate(s) and Component Fault(s)

Yes
nnne Yes

~~

h yperion.apertureCover=failedOpen

Yes ali.dataGate=failedDisabled
ali.dataGate=unknowSault

YCS

Final Diagnosis
Candidate(s) and Component Fault(s) Scenario ID

eolNomina1 none

E
.3

Yes

ali.led09=unknownFault
ali.apertureCover=failedIntermediate
ali.led08=unknownFault Yes

Yes hyperion.apertureCover=failedClosed
h yperion.apertureCoverSensor=unknownFault

warp. software=unknownFault I Yes

B. Integrated Tests
The diagnosis output of the integrated tests on the ASE test bed environment is stored in text files. The same

output will be used onboard the EO-1, and the text files will be compressed and downlinked to ground for analysis.
The results of the integrated tests are given below in Table 2.

10
American Institute of Aeronautics and Astronautics

eo 1 DualNominal
eo 1FSOl-AtiDataGateFailedDisabled

none I Yes
none I No

eo 1 FS03_AliMechanismPowerFailedDisabled

ali.dataGate=unkno wnFault
a l i .mechanismPower=f~l~i~bled
ali .mechanismPowerSensor=uuknownFault Yes

eo lFS04-~echanisrnPowerFailedEnabled

eo 1 F S O 5 ~ ~ ~ ~ s ~ o w e r S e n s o r F a i l e d

eo lFSO6-AUpertmeCbverFailaiClosed

In the integrated test, 16 out of 17 scenarios completed successfully. The reason that FSOl failed the test is due to
timing latencies of the actual system. The ALI data gate is commanded enabled, but commanded disabled again
before the "enabled" telemetry was received. Therefore, there is no difference to L2 whether the commands
succeeded or the component failed. L2 assumes no faults exist until evidence to the contrary is received, in this case
that assumption results in a missed diagnosis for FSO1.

Some other minor differences in the results also exist. For FSO6, we have a different double-fault candidate.
This candidate is as likely as the one found in the L2 unit test. Because of CPU restrictions, L2 is restricted from
exhausting all possible candidates. Here, it simply found this double-fault candidate first. If L2 was not limited by
CPU, it would have returned both double-fault candidates (for a total of 3 candidates) in both the unit test and the
integrated test.

Yes ali.mechanismPowerSensor=unknownFault
ali.mechanismPower=failedFhabled
ali.mechanismPo werSenso~unlmownFault Yes
ali.apertureCover=failedClosed
ali.led08=unknownFault YeS

MI. Conclusion

eo 1FS08-AMpertweCoverFailedIntermediate

eo lFSW_AIiLedO!9Failed
eo 1FS 1 O-AliLed08Failed

Over the past year, the project has gone from initiation to deployment on-board a spacecraft. Models of the
satellite were developed from scratch and diagnostic scenarios validated on a series of test beds of increasing
fidelity. A new Real-Time Interface and transient modeling methodology was employed to enable the software to
run on a real-world system. We learned about the Satellite, about operations procedures, and how to coax delicate
hardware and h w a r e systems into a working state. The L2 software has been uploaded to the satellite and tests are
about to begin.

Much work lies ahead. A future paper will report on results of the on-board validation tests. Further important
work remains on implementing recovery once a diagnosis is made. The models could be extended significantly, and
performance improvements can be made. We believe that this work will significantly contribute to the maturation of
model-based diagnosis and improve the chances for adoption of this helpful technology for many missions and
applications.

' Yes ali.apertureCover=failedIntermediate
ali.led08=unknownFault
ali.ledO9=unknownFault Yes
ali.ledOS=unknownFault Yes

11
American Institute of Aeronautics and Astronautics

eo l F S 2 4 - H ~ o ~ ~ ~ o v ~ ~ ~ o r F ~ e d

eo lFS35-WarpFailedToRecord

hyperion.apertureCover=failedOpen Yes h y p e r i o n . a p e r t u r e C o v e r S e n s ~ ~ ~ a u l t
warp.software=unknownFault Yes

References

1. J. Kurien and P. Nayak. “Back to the future for consistency-based trajectory tracking“. Proceedings of the 7th
National Conference on Art$icial Intelligence (AAAI‘2000), 2000.
2. N. Muscettola, P. Nayak, B. Pel1 and €3. Williams, “Remote Agent: To Boldly Go Where No AI System Has Gone
Before”. Art$cial Intelligence, Vol 100, Best of IJCAI 97.
3. S. Chien, R. Sherwood, D. Tran, R. Castano, et al., “Autonomous Science on the EO-1 Mission”. Proceedings of
the Seventh Znternational Symposium on Artijkial Intelligence, Robotics and Automation in Space, Nara, Japan,
2003.

Biographies

Sandra Hayden is Principal Investigator and Project Manager of the Livingstone on EO-1 (LEO-I) Infusion
Experiment, and Group Manager for QSS Group Inc. Founded the QSS Software Process Improvement Network
(SPIN) and lead CMMi pre-appraisals of selected QSS tasks. Architected and developed Integrated Vehicle Health
Management (IVHM) for reusable launch vehicles (RLVs), under the Space Launch Initiative (SLI) program. Ames
Project Manager, under the Next Generation Launch Technology program, for the PITEX project (Propulsion IVHM
Technology Experiment for X-vehicles), an IVHM application for the X-34 RLV Main Propulsion System (iMpS).
Her interests include model-based diagnosis and flight-critical systems. Prior experience is on software engineering
for large, mission and safety-critical Ada software systems such as the Canadian Automated Air Traffic System
(CAATS) and a 1553 System Data Bus for a submarine. Ms Hayden received an MS in Computer Science from
Simon Fraser University, Vancouver, Canada.

Adam Sweet is a research engineer in the Computational Sciences Division at NASA Ames Research Center, under
contract to QSS Group Inc. He graduated with an MS in Mechanical Engineering from UC Berkeley in 1999, and
has since worked at Ames modeling and simulating physical systems. His focus has been in robotics, hybrid system
simulation, and model-based diagnosis.

Scott Christa is a systems engineer at NASA Ames Research Center under contract to AerospaceComputing, Inc.
He graduated with a Bachelor of Science in Aeronautics from San Jose State University and holds an Airline ’

Transport Pilot (ATP) and flight instructor certificates. Although he doesn’t fly for a living, he specializes in
programming embedded system using anything from high-level languages down to assembler code.

12
American Institute of Aeronautics and Astronautics

